Prediction of Fault Occurrences in Smart City Water Distribution System Using Time-Series Forecasting Algorithm

نویسندگان

چکیده

The proposed research work is focused on forecasting the future requirements of water supply based current requirement and also identifying possibility occurrences cracks leaks using ARIMA (autoregressive integrated moving average) model. experiments were conducted real-time experimental hardware. pressure data obtained their p -value less than 0.05, which represents stability in forecasted range between 0.451379 N/m2 2.022273 N/m2. frequency ranges 1.706869 3.065836 (maximum peak) −0.81046 1.042164 (minimum peak). Forecasted at damaged condition lie 2.880788 3.29797 4.866227 5.664348 Similarly, for next 1 year 614.6292 (liters/week) 620.0099 (liters/week), forecast value with maximum ranging from 617.0086 to 628.5465 minimum peaks 611.0967 612.2914 (liters/week). above are a single distribution pipeline.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Fault Prediction of Nonlinear System Using Time Series Novelty Estimation

Many complex nonlinear systems have the characteristics such as difficult modeling, dangerous testing, and high cost to experiment with fault. Aim at these points, a new kind of novelty estimation method based on an on-line Least Square Support Vector Regression (LS-SVR) algorithm is presented for fault prediction of nonlinear system in this paper. Firstly, a set of characteristic token values,...

متن کامل

An Algorithm Forecasting Time Series Using Wavelet

In this paper we used the technique of wavelets with fuzzy logic to forecast enrollment of Alabama university from 1971 to 1994 where data were taken and analyzed by using wavelets, then logic , and we used the mean square error (MSE) to compare the forecasting results with previous different forecasting methods. The results were acceptable compared with the results of previous research. 1Intro...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

Adaptive water demand forecasting for near real-time management of smart water distribution systems

This paper presents a novel methodology to perform adaptive Water Demand Forecasting (WDF) for up to 24 hours ahead with the aim to support near real-time operational management of smart Water Distribution Systems (WDSs). The novel WDF methodology is exclusively based on the analysis of water demand time series (i.e., demand signals) and makes use of Evolutionary Artificial Neural Networks (EAN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2022

ISSN: ['1026-7077', '1563-5147', '1024-123X']

DOI: https://doi.org/10.1155/2022/9678769